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Abstract—The layered chalcogenide semiconductor GaSe has
been grown under various crystal growth conditions for optimum
performance for tunable terahertz (THz) wave generation and
broadband THz detection. Low-temperature photoluminescence
(PL), Raman spectroscopy, optical absorption/transmission,
electrical charge transport property measurements, and THz
time-domain spectroscopy (TDS) have been used to characterize
the grown crystals. It is observed that indium doping enhances
hardness of the grown GaSe crystals, which is very useful for
processing and fabricating large-area devices. GaSe crystals
have demonstrated promising characteristics with good optical
quality (absorption coefficient ≤0.1 cm−1 in the spectral range of
0.62–18 µm), high dark resistivity (≥109 Ω cm), wide bandgap
(2.01 eV at 300 K), good anisotropic ( ||and ⊥) electrical transport
properties (µe/h, τe/h, and µτe/h) and long-term stability. The
THz emission measurements have shown that the GaSe crystals
are highly efficient for broadband tunable THz sources (up to
40 THz), and sensors (up to 100 THz). Additionally, new THz
frequencies (0.1–3 THz) have been observed for the first time from
an anisotropic binary and a ternary semiconductor crystal. Details
of characterizations as well as optimum crystal growth conditions
including simulation and computer modeling are described in this
paper.

Index Terms—Crystal growth, optical characterization, tera-
hertz (THz), time-domain measurements.

I. INTRODUCTION

LAYERED chalcogenide semiconductors have been stud-
ied for a long time due to their unique properties coming

from their layered structures. Their anisotropic properties result
from strong covalent bonding within the layer planes and weak
van der Waals type bonding between them [1]. Among various
chalcogenides, the III–VI semiconductor GaSe has been stud-
ied for a long time due to its large nonlinear optical coefficient
(d22 = 75 pm/V) and its high structural anisotropy [1]–[4].

The nonlinear optical effects of GaSe can be utilized for
generation and detection of broadband tunable terahertz (THz)
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radiation [5], [6]. In spite of its interesting characteristics, GaSe
has not been widely studied due to the difficulty of growing and
processing of large crystals resulting from its low mechanical
hardness [7]. In order to address this issue, we have studied In-
doped GaSe and Ge-doped GaTe crystals for THz applications.
The crystals have been grown based on numerical simulation
for optimizing THz wave generation and detection properties.

One of the primary difficulties in GaSe single crystal growth
is its extremely low thermal conductivity (0.37 W/mK) along the
c-axis near the melting temperature. Also, the thermal conduc-
tivity is anisotropic. The radial conduction in the solid is more
efficient for heat removal from the growth interface compared
to axial conduction in GaSe growth. Anisotropy and liquid/solid
conductivity ratios are expected to strongly influence the inter-
face shape, which, in turn, affects twinning and other defects.
Furthermore, the Prandtl number of GaSe is about 2.8, which
results in strongly coupled melt flow and heat transfer. It is ex-
pected that any disturbance of melt flow from the pulling rate
and/or rotation rate will significantly affect the temperature dis-
tribution, and consequently, the interface shape. It is, therefore,
extremely important to properly control the melt flow, growth
interface, and solute transport. The crystal growth parameters
were determined based on simulation and modeling studies us-
ing a numerical model, multizone adaptive scheme for transport
and phase-change processes (MASTRAPP). We have also in-
vestigated two other chalcogenide semiconductors, GaTe and
GaSexTe1−x , as new THz sources for the first time. In this ar-
ticle, we report details of crystal growth based on numerical
modeling and simulation, characterizations of the grown crys-
tals, and the THz results for broadband tunable THz sources and
sensors.

II. EXPERIMENTAL

Opto-electronic properties of THz crystals are strongly and
negatively influenced by the presence of trace levels of residual
impurities, since they substantially reduce charge carrier trans-
port and optical absorption/transmission properties of the grown
crystal. We have grown GaSe, GaTe, and GaSe0.5Te0.5 crystals
from stoichiometric amounts of high-purity (7 N, Alfa Aesar)
Ga, and vacuum-distilled and zone-refined (≥7 N) Se or Te.
For GaSe and GaTe crystal growth, 1000 ppm indium (In) and
0.8 wt% germanium (Ge) were added as dopants, respectively.
For growing high-quality large single crystals, it is important to
control heat transfer and the fluid flow pattern in the furnace.
In order to predict heat transfer in the furnace, numerical mod-
eling and simulation were conducted by MASTRAPP [8]–[11].
Based on simulation results, the temperature distributions in
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Fig. 1. (a) Stream function and temperature distributions in a quartz ampoule
for a small diameter GaSe growth. (b) Thermal stress during GaTe crystal
growth.

EIC’s Bridgman furnace during GaSe and GaTe crystal growth
operations were predicted as reported in our previous work [12].
Then, stream function and temperature distributions in a quartz
ampoule of ∼ 1 inch (∼2.5 cm) diameter GaSe crystal growth
were calculated. As shown in Fig. 1(a), the temperature distri-
bution and fluid flow in the solid and melt phases are strongly
affected by the length of the crystal and melt convection in the
ampoule. Temperatures at the center and on the edge of a grown
crystal are very different. A curved interface generally results
and varies with the crystal length.

A thermo-elastic stress analysis was performed for a cylindri-
cal crystal using a displacement-based model by the equilibrium
equations:
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where σrr ,σzz , and σϕϕ are the normal stress components in
the radial, axial, and azimuthal directions, respectively, and σrz

is the shear stress component. Thermal stresses were calculated
from the Hooke’s stress–strain relations for an isotropic mate-
rial. The preliminary results of thermal stress in a GaTe crystal
are shown in Fig. 1(b). Based on this modeling work, the crys-
tal growth parameters were set. The crystal growth has been
carried out using a modified vertical Bridgman growth method
described earlier [3], [8]–[12].

The grown crystals were processed, and then, characterized
by Raman spectroscopy, photoluminescence (PL), optical ab-
sorption, Hall effect, and current–voltage (I–V) measurements
for determining structural, optical, charge-transport, and elec-
trical properties. The mobility of the grown GaSe crystals were
measured both along and perpendicular to the layer planes be-
tween 77 and 300 K at magnetic fields up to 0.5 T. Then, the
crystals were characterized for THz applications as sources and
sensors. For studying the emission and detection characteristics
of THz radiation from the grown crystals, THz time-domain
spectroscopy (THz TDS) systems at Rensselaer Polytechnic In-
stitute and Yale University were used. The details of the RPI
testing setup were discussed in our previous report [12]. For
THz emission measurements at Yale University as shown in
Fig. 2, a regeneratively amplified Ti-sapphire laser produced
100 fs, 800 nm pulses at 1 kHz with 800 mW average power,
and the generated pulse was split into two beams with a non-

Fig. 2. Schematic experimental setup for THz TDS system at Yale University.

polarizing beam splitter, one to photoexcite the sample, and the
other to detect the EM transient. The vertically polarized exci-
tation pulse reached the sample after traversing a variable delay
line that determined the time at which the sample was excited. A
paper beam block ensured that any visible power not absorbed
by the sample did not reach the detector. The beam block was
transparent in the far infrared (FIR) region of the spectrum, and
therefore, allowed the generated THz pulse to pass through. The
other portion of the visible pulse was used to detect the electro-
magnetic (EM) transient via free-space electro-optic sampling
(FSEOS) [13] in a 0.5-mm-thick ⟨110⟩ ZnTe crystal. The entire
THz waveform was mapped out by scanning the variable delay
line with a step size equivalent to 5–10 fs, and determining the
value of the transient electric field at each moment in time. The
sample could be rotated azimuthally about the surface normal,
and/or about vertical or horizontal axes if oblique incidence was
required.

III. RESULTS AND DISCUSSION

From the crystal growth procedures described earlier, we have
been able to grow up to 10-cm-long and 2.5-cm-diameter ingots.
It is reported in the literature that by doping 0.1–3 mass% In
to GaSe, increased mechanical hardness was observed [14]. We
have also measured significant increase of microhardness from
7.8 to ≥14 kg/mm2 by doping GaSe crystals with In. The en-
hanced microhardness of In-doped crystals allow us to cut and
polish optical faces in any directions. The GaTe crystal was
much harder than In-doped GaSe crystals and could be cut eas-
ily into various shapes and sizes. After processing the GaSe
crystals, PL and Raman spectra were taken. Low-temperature
photoluminescence spectra at 10 K of GaSe and GaSe:In crys-
tals are shown in Fig. 3(a). The dominant peak of GaSe is the
exciton bound to an acceptor (A0 , X). The ground state free
exciton (X)n=1 and one-LO-phonon replica of the indirect free
excitonic recombination (IFE) and the radiative recombination
of indirect bound excitons to deep neutral-acceptor center (IBE)
have been identified [15]. It is interesting to see that the (A0 ,
X) peak almost disappears in GaSe:In, while a strong broad
peak associated with indium emerges. The peak is attributed
to a donor–acceptor pair (DAP) mainly, and electron to accep-
tor partly. It is generally accepted that the major acceptors in
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Fig. 3. (a) Photoluminescence spectrum of as-grown GaSe crystal at 10 K. (b)
Raman spectrum of GaSe crystal at room temperature.

Fig. 4. (a) Optical absorption spectrum of GaSe crystal. (b) Terahertz spectra
generated from 180 µm GaSe, the detector was 30 µm GaSe.

undoped GaSe are VGa . Doped with indium, most of gallium
vacancies are occupied by indium, and the InGa may be a non-
radiative center. Therefore, the (A0 , X) peak decreases signifi-
cantly while the (X)n=1 peak becomes dominant in GaSe:In. It
is worth noting that the acceptor levels observed by DLTS are
deeper than those measured by PL [16]. It is also noted that the
temperature dependence of the peak energy showed a similar
trend as the literature, but there was slight shift in the peak en-
ergies. The observed Raman modes in Fig. 3(b) matched well
with the reported and identified modes in the literature with a
slight lower frequency shift presumably due to measurement
temperature difference. However, E′(TO) and 2E′ (LO) modes
were not observed in our crystal [17].

Following the PL and Raman spectra measurements, optical
absorption measurements were carried out. The optical absorp-
tion measurement data in Fig. 4(a) showed good optical qual-
ity (absorption coefficient ≤0.1 cm−1 in the spectral range of
0.62–18 µm) with the bandgap of 2.01 eV at 300 K. The hole
mobility measurements showed that µ∥ = 190–210 cm2/V · s
and µ⊥ = 120–130 cm2/V · s at 300 K, while these values in-
creased to 585–590 cm2/V · s and 260–270 cm2/V · s near
77 K. The electron mobility at 300 K was µ∥ = 80 cm2/V · s
and µ⊥ = 300 cm2/V · s, respectively. Both hole and electron
mobility measurements showed anisotropic electrical transport
properties of GaSe. Then, hole and electron mobility–lifetime
products were measured using Hecht analysis that showed com-
paratively similar values with µτh ∼ 1.5 × 10−5 cm2/V and
µτe ∼ 1.4 × 10−5 cm2/V. The current–voltage measurements
showed that the resistivity of GaSe crystal was ≥109 Ω cm. The
Ge-doped GaTe showed a resistivity in the similar range with

Fig. 5. Frequency domain spectrum. (a) In:GaSe. (b) Ge:GaTe crystals.

Fig. 6. Time-domain waveforms of GaSe0 .5 Te0 .5 crystal.

slightly lower values. The high resistivity of GaTe is attributed
to Ge doping and high-purity precursors [18], [19].

The crystals were then evaluated as THz detectors and/or
emitters using THz–TDS systems. For undoped GaSe crystals,
the GaSe crystals showed emission up to 40 THz and also de-
tection capabilities up to 40 THz, as shown in Fig. 4(b). The
In-doped GaSe crystals and Ge-doped GaTe crystals showed
terahertz signals in 100 GHz–2 THz range, as shown in Fig. 5.
The THz emission characteristics are tunable by rotating the
crystals [20], [21].

An EIC-grown GaSe0.5Te0.5 crystal was also tested as a
possible new terahertz source. Fig. 6 shows the time-domain
waveforms of this new crystal. From Fig. 6, it is clear that the
GaSe0.5Te0.5 crystal can work as a strong terahertz emitter. As
far as the authors’ knowledge and thorough literature search
are concerned, it is the first report of THz emission from this
ternary chalcogenide crystal. The GaSe0.5Te0.5 crystal is in-
teresting because it has a potential of tuning the THz emission
and detection characteristics by controlling stoichiometry of the
grown crystal.

IV. CONCLUSION

We report crystal growth and characterization of doped GaSe
and GaTe crystals for broadband THz sources and sensors. The
grown crystals based on simulation results showed good ma-
terial properties. It was observed that In doping improved the
mechanical hardness of the GaSe crystal without noticeable
changes in other material properties. The enhanced mechanical
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properties will allow us for scaling up, leading to higher effi-
ciency and output power.

The emission results in the THz range for the doped GaSe
and GaTe crystals show that they are promising as THz sources.
Additionally, THz emission from a ternary GaSe0.5Te0.5 crystal
was observed. This new THz crystal can give us the capability of
tuning THz spectra by controlling the stoichiometry. The grown
THz crystals are promising for various applications including
biochemical and trace explosive vapor identification, security
screening, and medical imaging.
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