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The finite-difference time-domaifFDTD) method has been applied to time-resolved THz
spectroscopyTRTS) experiments. Time-resolved THz spectroscopy utilizes an optical pump pulse

to excite the sample, followed by a far-infraréelR) probe pulse with frequency components that
span from 10 to 100 ciit. The subpicosecond evolution of the FIR spectrum is obtained as a
function of time after the visible photoexcitation event. Significant challenges arise in interpreting
these experimental results due to the very different frequencies of the pump and probe pulses.
Therefore, it is essential to simulate the experiment. The method described entails numerically
propagating both the THz probe pulse and the visible pump pulse simultaneously, keeping track of
the transiently induced polarization from absorption of the visible pulse. Group velocity mismatch
between the visible and THz pulse and a transiently changing response function are completely
accounted for in the calculation. Furthermore, a spatially varying polarization can be included to
account for a nonuniform excited region of the sample under investigation. The response function
of the material is described as a multimode Brownian oscillator that can describe dispersive media
in a very general sense. In particular, the overdamped, underdamped, and critically damped cases
are all included, as well as special cases such as a Debye or Drude response. As a specific example,
we present results of modeling a TRTS experiment of photoexcitation of a dye in solution, namely,
2,11,20,29-tetrdert-butyl-2,3-napthalocyanine, dissolved in toluene. We carry out a nonlinear least
squares fit of a parameterized model to the measured data to show that the FDTD—-TRTS method is
able to accurately reproduce the features observed in the measured data 2901 @merican
Institute of Physics.[DOI: 10.1063/1.1338526

I. INTRODUCTION efficient, a(w), and index of refractionn(w). Typically,

Recent developments in time-resolved THz spectroscopljurier transform(FT) methods are used to extract informa-
(TRTS) have enabled the measurement of the electric field ofion from EM pulse propagation experiments, and these
a nearly single-cycle THz pulse after it propagates through &€thods have been used successfully to interpret static THz
photoexcited medium with subpicosecond temporaispectra®” unfortunately, they do not correctly describe a
resolution’™® This new visible pump, far-infraredFIR)  TRTS experiment. In this article, we show that FDTD calcu-
probe spectroscopy, has opened up the FIR region of thiations can reproduce the phenomena encountered in a TRTS
spectrum to time-resolved studiéshich have proven to be experiment when the FT methods fail.
of great utility in other regions of the spectrunThe FIR Three situations arise in TRTS experiments that hinder
regio.n contain; important information rele\{ant to chemistrythe use of FT methods” 18 First, group velocity mismatch
physics, and biology, andme-resolvedstudies in the FIR  oyists hetween the propagation of the visible and THz pulses

will provide new _|n5|ghts. Unique challenges e>§|st to_ €O in the dispersive medium. Second, the optical properties of
rectly collect and interpret data from TRTS experiméfs : .

. the medium may change on the timescale of the THz pulse
These challenges arise because the THz probe pulses haye

large bandwidth in relation to their central frequency; hencebur_at'on% -Lh'rdr'] there T“'ght b? a_nogumform_slpgufal d|str(|j—
the slowly varying envelope approximation is not valid. In ution of the photoexcited region in the matenal being stud-

this article we discuss these challenges, and extend finitd€d- These situations are all correctly simulated in a FDTD
difference time-domaifFDTD) pulse propagation methods Calculation by numerically propagating both the visible and
to model TRTS experiments in order to extract time-the THz pulses simultaneously. The transient polarization in-
dependent information. duced by propagation of the visible pulse influences the
FDTD methods are commonplace for solving complexpropagation of the THz pulse, and evolves according to the
problems for electromagnetiEM) pulse propagatiot’®°but  propagation of the visible pulse and the excited state proper-
they have only recently been applied to EM propagation inties. Thus, the THz pulse encounters a medium whose re-
dispersive media:~*° A dispersive medium is described by sponse is changing or has changed due to concurrent or prior
frequency-dependent material parameters: the absorption cgropagation of the visible pulse. Herein lies the power of the
FDTD method in simulating TRTS experiments: the optical
dElectronic mail: charles.schmuttenmaer@yale.edu properties of the medium are transiently modifoeding the

0021-9606/2001/114(7)/2903/7/$18.00 2903 © 2001 American Institute of Physics



2904 J. Chem. Phys., Vol. 114, No. 7, 15 February 2001 M. C. Beard and C. A. Schmuttenmaer

propagation of the THz pulse, which is exactly what occurs n-1 (m+1)At
in the experiment. D"(i)=£.,e0E"(i)+ > E”*m(i)f x(7)dr,

This article is organized by first describing the static m=0 mAt
FDTD method for dispersive media. Then the multimode ®)
Brownian oscillator(MBO) time-domain response function wherenAt is the time,iAz is the distances.. is the high
is introduced and shown to be a general way to describéequency dielectric constant, ang is the permittivity of
dispersive phenomena. These response functions are then fnee space. If the material response function has an exponen-
corporated into the FDTD method. Finally, the FDTD tial form, then the summation in Eg3) can be recursively

method is extended to include the visible pump pulse propadpdated at each time step. Following Luebbetral, ' *?we
gation to simulate TRTS experiments, and results of photodefine the following quantities:
excited 2,11,20,29-tetrirt-butyl-2,3-napthalocyanine (m+1)At
(TBNC) in toluene are shown to illustrate the technique. szf x(7)dr, (4)
mAt
AXm:Xm_Xm-%—l' (5)
Il. METHOD n—1
A. Finite-difference time-domain propagation Y= Eo E"MAX™. (6)
e
A dispersive medium can be treated within the standard o o
Yee FDTD metholf using several different methodologies. ' N€ €lectric field update equation is ther
The three most common approaches are the recursive convo- e 1 At
lution (RC),'**?the Z-transform method? and the auxiliary E"*%(i)= ———E"(i)+ Y-
differential equation(ADE) method®®> While each method ext x° et x° (ex+x%)e0AZ
has its advantages and disadvantddese have found the Jo(i)At
RC—FDTD method most useful for simulating TRTS experi- X[HM Y2+ 1/2) —H " Y —1/2)]— = ,
ments because it is most intuitive, easiest to implement, and go
general enough to simulate a wide variety of experiments. (7)
T_he only r(_aquirement of the_ RC—-FDTD method ig that theand magnetic field update is
time-domain response function can be expressed in an expo-
nential form, which is satisfied by the MBO response func- ~ H" " Y(i+1/2=H""Y4i+1/2)
tion. Lorentzian, Debye, and Drude responses are all specific At
cases of the MBO response function. Furthermore, the opti- - ——[E"i+1)—E"(i)]. (8)
cal properties of an arbitrary medium can be expressed as a nAz
linear combination of simple MBO functions. The source current; is given by
Because the beamwaists of the visible and THz beams
are much larger than the penetration depth of the excitation Evhzt) _
pulse, we need consider only one dimension, but this method  J (i)= z , (9)
is easily generalizable to three dimensions. In one dimen- 0, i#5

sion, the Maxwell curl equations are ] .
where Z=\ug/eq is the impedance of free space, and

VxH= @+J Etn,(t) is the value of a reference THz pulse at titm&he
oot ’ reference pulse is generated at grid position No. 5, which is
(1)  typically well in front of the sample cell position and five

VXE=— ﬁ grid points in front of the boundary of the simulation space.

T o Absorbing boundarié$?! are used to absorb the backward

) _ ] _ o _ going pulse as well as any reflections from the sample cell.
whereD is the displacement field is the electric fieldB is To propagate the pulse, we only need to obtgft), as

the magnetic fieldH=uB (where u is the permeability  yescribed below, and then evaluate E@.and (8).
andJ is the current. For the following] is replaced by the

source current which is a reference THz pulse, and no other
sources of current are included. .
The RC—-FDTD method is based on convolution of theB:- MBO response function

material response functiofor time-domain susceptibility The MBO response function is described by a solution
x(t), with the electric field to obtain the electric of the generalized Langenvin equatit®LE) of motion?? If

displacement-*? we average over thermal fluctuations and make the Markov-
. ian approximatioriconstant damping coefficieny), then the
D(t)=sw80E(t)+£0f E(t—7)x(7)d7. (2 GLE reduces to
0
Discretization within the familiar Yee céfl leads to the sj(t)+wjzsj(t)+2yjsj(t): \/ J*VE(t)’ (10)

FDTD formula for Eq.(2) yielding'*? m;
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where,s; is the macroscopic mode coordinate that represents
the expectation value over all microscopic orientations and
phases of thg¢th mode,w; is thejth oscillator frequencyy;
is the jth damping coefficienty; is the coupling of thgth
mode to the driving fieldE(t), m* is the effective mass of
the oscillator, and/ is the volume. This is simply the equa-
tion of motion for a damped, driven harmonic oscillator with
force constank;= w]-z and damping coefficien;=21y; .

The response function of a medium determines the con-
tribution to the polarization at timefrom an electric field at
prior times; this contribution is

y(t) arb. units

t
P(t)=80J E(t,7) x(7n)dr. (11
0 Time (ps)
This is the second term of qu)' X(T) can be obtained by IG. 1. Plots of the time-domain response function for several different
. . . . .4 | - | u | Vi I
ConSIde”ng the delta function ImpUIse response to the equ ases of the MBO. The solid line is critically damped behavior, and the long

tion of motiorn’” 3[EQ- (10)] and is given byl dashed line is for overdamped. The dash—dot—dotted line is for under-
damped, the dotted line is for the Drude response, and the dash—dotted line
Xj(H)=6(t)exp(— y;t)[Ar exp(Bjt) + A expl — Bit) ], is the Debye response. With the RC—FDTD method described in the text we
12 are able to model any combination of these dielectric responses.

where ;= \/'yjz— wjz and g may be either reald;<y;) or

imaginary (;>1v;), and6(t) is the Heaviside step function

att=0. If Ay=—A,=7;/(28;) then we recover the Lorent- +0. We show here that the RC—FDTD method can be ap-
zian response, and when,=0 also holds, we recover the plied to a general Brownian oscillator; both underdamped
Drude response. I1A;=0,A,=7;/(28;), then we recover and overdamped motions can be modeled with complete

the Debye response whes)=0. generality. This is essential for FIR studies since the majority
For example, the time-domain Lorentzian response i$f response functions encountered are overdamped. The ap-
given by proach for the underdamped case cannot be implemented for

_ the general overdamped case simply by allowjpdo be
Xi(t)= %exp(— yit[exp(Bit) —exp(— B;b)], (13) real. Our general approach outlined below is based on their
Bi approach for the underdamped cé%e.
and the frequency-domain response is given by the Laplace To implement the RC-FDTD method we evaluate the

transform of Eq(13): integral in Eq.(4), determine the convolution term of E@),
5 5 and evaluate Eqg7) and(8). For convenience, we split the
()= wiGj(es—eo)  7jGj(es—ex) response function in Eq12) into two parts,y; andy,, and
Xi(@)= 0+ 2wy —w?’ xi(v)= 2+ 2ivy — 2 evaluate each individually. For the Lorentzian response of
. : . . (14  Eq. 13 we obtain
where w=2mv, ‘yj=2777j’ and njzwszj(es—am), g IS m o Agj B
the static dielectric constant ang = (s;_1—¢;)/(es—¢..), XL By exgmAt(—y;+5j)]
wheree; describes thgth intermediate value of the dielec-
tric constant. X{exg At(—y;+B)]1- 1}, (19
Equation(12) is valid for underdamped or overdamped —A,.
oscillators, as long ag is allowed to be complex. There are X;’sz(ﬂT'J_)exqut(— Yi—Bj)]
three distinct cases of damping: i
) X{exg At(—vy;—B;)]—1}. 16
underdampeds;>y;, ;=i \/;JT;/JZ {exd A== )1 -1} (16)
N The response functiog at time stepm+1 is related to the
critically dampedw;= v;, B8;=0; previous value by
overdampedn; < y;, 8=y, — ;. X=Xy exd At(— i+ 8))]
Equation (12) approaches the critically damped case +ngj exd At(—y;—B)]1, (17)

smoothly from either side, but is incorrect for the exact case

of critically damping. We treat cases of critically damping by and, therefore,

increasingw; by one part in 18. Figure 1 shows plots of the AXT,j =ngj{1— exg At(—y+B)]},

response function for the three cases, and the special cases of - (18)
Drude and Debye overdamping when=k;=0. Previous Axzi=xo{1—exd At(=y=pB)1}-

workers have used the RC-FDTD method forrne convolution term in Eq6) can be updated as follows:
underdamped? Debye’® and Drudé! oscillators, but it has _ o .
never been applied to the general overdamped casekyith P =B A +exd At(— v+ 81y (19
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lating the transmission of a THz pulse through neat GHCI
The static FIR spectrum of CHEIs shown in Fig. 2. The
data were obtained by measuring the THz transmission
through a variety of path lengths and extracting the absorp-
tion and index of refraction from a Beer's law analysis as
described in Ref. 26. A doublgwo-pole MBO model was
fitted to the data in the frequency domain with the resulting
parameters given in the Fig. 2 caption. The inset of Fig. 2
displays the time-domain response function. One oscillator is
overdamped and one is underdamped. This static experiment
was then simulated with the extended RC—FDTD method,
the results are compared to the experiment, and the MBO fit
in the frequency domain. This verifies that the FDTD method
can reproduce the static experiment for both underdamped
and overdamped oscillators. Furthermore, we have verified
that the FDTD method can reproduce any combination of
MBO responses: Drude, Debye, underdamped, overdamped,
and critically damped. It is essential that in the static limit all
of the cases be dealt with accurately before proceeding to the
time-resolved situation, because the oscillators may change
from one limit to another. For example, an oscillator may
change from underdamped to overdamped upon photoexcita-
tion.

FIG. 2. Static FIR absorption and refractive index of chloroform along with B, TRTS-FDTD method
the best fit in the frequency domain and FDTD propagation. The points are

the measured data, the solid line is the best fit line, and the dashed line

(virtually indistinguishable from the solid lines the FDTD result. The best

fit values werev;=41.604 cm?, y,=30.56 cm?, v,=6.57 cnm’%, v,
=20.40 cm!, £,=4.801,6,=4.702, ands,.=2.13. The inset is the time-
domain response function.

P, (D =E()AX3, +exd At(—y;— Bl *, (20

Y=Lty (21)

with the initial time stepy{=0. Thus, for each oscillatgr
we need two additional real update termgiis real and two
complex update terms i is complex,#1;, and ¢,;. To
obtain the quantities needed in tEdield update of Eq(7),
we sum over all the oscillatorgoles which describe the
material parameters, taking the real partgifis complex,
Y"=3;Re ], andx"=3; Re x|"]. Note that for the un-
derdamped casgg; in Egs.(13), (15, and(16) is complex
and thus so are; and x;. Before using these quantities in
Egs.(7) and(8) the real part is taken as described above.

We can also apply this approach to a system with two o
more independent response functions, such as a homo

neous mixtur® where e=3;f,e;, wheree is the overall
complex dielectric function, angl the dielectric functions of
the individual components with volume fractiép. We find

that for each additional component of the mixture, two addi-

tional update terms per oscillator are required.

Il. RESULTS
A. Static FDTD results

Extension of the FDTD method to time-resolved simu-
lations is achieved by including the effects of the visible
photoexcitation on the THz pulse propagation. In principle, a
separate FDTD treatment of the visible pump pulse could be
performed. This is not necessary, however, since it experi-
ences very little dispersion because the absorption coefficient
and index of refraction of the medium are essentially con-
stant over the bandwidth of the pulse. The visible pulse
propagates according to its group velocity in the material,
and is attenuated according to Beer’s law. The primary effect
of the visible pulse is that it changes the material parameters
governing propagation of the THz pulse. These effects are
included by providing spatial and temporal dependencies to
the response function, i.ex;(t)— x;(t,t",z), wheret” rep-
resents the relative delay between the visible and THz pulses
prior to entering the sample, armis the distance into the
sample the pulses have propagated. With these two addi-
tions, a wide variety of TRTS experiments can be simulated.
For example, consider Fig. 3, which displays a THz
pulse as it propagates from left to right through a hypotheti-

lcal photoexcited medium at three different pump-probe delay
Yffmes. The vertical line represents the interface of air and the

material under investigation. The solid and dashed traces
represent the THz pulse and the transient polarization in-
duced by the visible pulse, respectively. The FIR optical

properties are altered by absorption of the visible pump
pulse, which is taken to have a Gaussian temporal profile.
The properties return to their nonphotoexcited values with an
exponential lifetime. Therefore, the temporal dependence of
the transient polarization is a convolution of a Gaussian and
an exponential function. The propagation time of the THz

As an example of applying the above FDTD formalism pulse is the same in each of the three panels, and only the
to an overdamped oscillator, we present the results of simuelative delay of the pump pulse has been changed. In Fig.
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pump pulse width is about 100 fs, which limits the time step
Air Sample to 10 fs and consequentially the distance step (o8 If the

0.40 1 absorption depth is smaller than 30n, however, then the
‘ yZ \\ spatial scale will be the limiting factor. We typically perform
= 0.15 = A simulations at 0.8 times the Courant stability criterion.
s Y
-0.10 1
C. TBNC/toluene simulations
2035 - (@) "

As a specific example of the TRTS—FDTD method we
present results of simulating a TRTS experiment. A dye
molecule, TBNC, is dissolved in toluene and photoexcited

0.40 by the visible pulse, after which the solvent molecules are
probed by the THz pulse. The goal of this experiment is to
015 probe the low frequency collective modes of the solvent in
= response to the perturbation by the excited solute. The vis-
-0.10 ible pulse excites TBNC into its lowest excited electronic
state, which has a different charge distribution than its
(b) ground state, and the solvent molecules respond to this new
-0.35 4 L
charge distribution. Roughly 5% of the solvent molecules,
those participating in the solvation process, are affected by
this perturbation.
0.40 7 Instantaneous electronic responses can contribute to the
signal in addition to the nuclear response. We attribute the
0.5 1 /\ response close to time=0, when the two pulses are over-
5 M~ -~ lapped, to electronic processes, while those that persist for
20.10 longer times are attributed to a nuclear or molecular contri-
(c) bution. Therefore, we add an electronic response to our
model which is active only during the duration of the pump
-0.35 1 pulse. In summary, we treat the photoexcited sample as a
T T T mixture of three types of oscillators whose populations are
0.0 0.2 0.4 0.6 time dependent: nonphotoexcited oscillators, photoexcited
oscillators, and an oscillator that corresponds to an instanta-
Distance (mm) neous electronic response.

FIG. 3. TRTS—FDTD simulation. The THz pulse has propagated the same The response function is given by

amount of time in each panel. The solid line is the THz pulse and the dashed "o " "

line represents the transient polarization resulting from the propagation of x(61",2)=fo(t,t",2) xe(t) +[1— fo(t,1",2) ] xo(1)

the visible pulse. Ifa) the pump pulse comes before the THz pulsebin "

the pump pulse arrives at the same time as the THz pulse, afg] are +a(tt 'Z)Xelec(t)' (22)

effects of the pump pulse arriving before the THz pulse. . . . .
pump p g P wherefg(t,t”,z) is the “population” of excited oscillators at

time t—t” and positionz. The fraction not affected by pho-
toexcitation is simply *f4(t,t”,z). The contribution of the
instantaneous response is given #&ft,t,z). The excited,
nonexcited, and electronic response functions ggé&t),
xo(t), andyeedt), respectively.

The temporal dependence of the excited nuclear oscilla-

3(a) the pump pulse arrives after the main part of the THz
pulse, however, the trailing edge of the THz pulse is still
affected by it. In Fig. 8) the pump pulse arrives in the

middle of the THz pulse, and the THz pulse is strongly dis-

torted by the changing optical constants. Finally, in Fig) 3 tors is given by the convolution of the visible puldeken as

the pump pulse arrves vyell befOTe the THz pu'Ise. Howevera Gaussian functiorand a single exponential decay that has
the THz pulse still experiences different material parameterg | optional long time offset. The spatial dependence is a

for (_jifferent parts of the pulse due to the short “fe“”_“e of t_hesingle exponential function determined from the absorption
excited state parameters chosen. The pump pulse INeNSIty i3 efficient of the dye solution. Thus, the excited “popula-
seen to decrease from Fig(@Bto Fig. 3c¢) due to the ab- tion” is given by '

sorption of the visible pulse as it propagates through the
medium. fo(t,t”,2) :g(t//,t)®(e—t"/7+ b)exp — az)

To avoid numeric errors we have found that the time and
distance grid steps must be at least 10—100 times smaller B » t'—t")2
than any variations in either the tempdfair spatial scale of =foexp—az) f,m EXF{ _< Aw ) }
the simulation. In addition, the Courant stability critefibn
that Az/At=c/nty, must be adhered to, wherg, is the exp{E

-

. . . . X
index of refraction for the THz pulse. In our simulations, the

+b|dt’, (23
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FIG. 4. Two-dimensional contour plot of the THz difference sgaump on—pump ojf (a) Experimental data ang) FDTD—TRTS results found by the best
nonlinear least squares fit to the data employing the model described in the text and parameters given ificT &lésltaken at 1.3 p&@s indicated by the
upper line on the two gridsThe measured data are shown by the solid line, and the calculated data are shown by the dastetiénécal to(c), except
that the cut is taken at 0.2 ps.

whereg(t”,t) is a Gaussian function representing the visiblefind the value of F(ty) which corresponds tdg=nAt

pulse,® denotes a convolutiory, is the lifetime of the ex-  _(jazn, /c)+t”. The convolution needs be calculated
cited oscillatorsh is the long time offsetq is the absorption only once for the entire simulation.
coefficient of the dye solutiomAw is the full width at half The model also includes effects of the quartz cuvette.

maximum of the Gaussian pump puldg,is a scaling pa- \ye propagate the THz pulse through the cuvette, both before
rameter that normalizes the convolution of the GaussiaRng after the sample in order to account for slight dispersion
function with the exponential, then scales it fymaxWhich  anq apsorption. The reference THz pulse used is the mea-
approximat_ely represents the volume fraction of solvent moly ;e reference pulse which has been propagated backwards
ecules which are affected by one laser pulsé=t i, {ime through the nonphotoexcited toluene solution and
—(znys/c) is the effective propagation time into the sample g4tz cuvette. In addition, we account for propagation and
wherg Nyis, IS the indgx of refraction for the visible pulse, istortion through the detectd$.
andc is the speed of light. , . We employ a nonlinear least squares fitting routine to

_ The time ,depend_encg of the electronic contribution IS yj st the parameters in our model to obtain the best fit. The
given bya(t,t’,z), which is taken to be the same Gaussian,,nexcited parameters of toluene are fit well by a single
function that represents the visible pulse described in Edyyerqamped MBO oscillator and are held fixed during the fit.
(23 "and multiplied by the same Sp?"a' dependency-l-en parameters were allowed to vary during the fit, which
gxp(— az_). For convenience, th_e electrqnlc response fu_ncbrings up the issue of becoming trapped in a local minimum.
tion Xelec!S tgken to be a Lorenztian functzlon whose couplingpere are three reasons that we feel the parameters are de-
to the. f|eld.|s given by the pI’C.)dudsdergec . termined, unambiguously however. First, the correlations

Dlscretlzgtlon of Eq.23) IS accomplished by numeri- among parameters were quite low. For example, the highest

cally calculating the convolution term at the start of thecorrelation was betweels o, and veee, and was only 0.73.

simulation for each point in the simulation space and SaVingSecond, these are the results of a global fit. That is, these

the re_sults. _Depen_dlng on the time stgp size and the Iengfch %farameters simultaneously describe 30 individual scans, each
the simulation, this can become quite a large calculation

Theref tpicall lculate th uti 10of which is 512 points long, for a total of 15360 data points
erefore, we typically caculate the convolulion every L9, . qed in the fit. Third, the feature at a THz delay-e2.9
steps and interpolate to obtain a value at each point in th

imulati Th during the simulati impl 85 that grows in later than the two primary features at 2.1 and
f|mu a |o”n space. Then, during Ihe s”|mu ation we simply,; g ps is very sensitive to the values of the parameters, par-
look up” the appropriate value of 4(t,t”) and multiply by

o o o o, ticularly the instantaneous electronic contribution.
exd —(i—ig)Aza]6(i—ig), where iy is the position of the y

mole in the simulation a6 —i ) is the Heavisid The results of the FDTD-TRTS fit are shown in Fig. 4
z'lpajnctio: simulation space afi —io) is the Heaviside and it is seen that the agreement is quite good. Figlee 4

This is achieved by calculating the following convolu- displays a contour plot of the measured data and Riy. ¢

tion at the start of the simulation- the best fit calculated data with the parameters given in Table
: I. Figures 4c) and 4d) are representative cuts at pump—
probe delay times of 1.3 and 0.2 ps, respectively, which

exp(t—d +bl, (24) compare the calculated and measured data. We collect the
T data as described in Refs. 7 and 18 such that every portion of

the probe has experienced the same delay from the pump

where F(ty) represents the population at the dummy timebeam. This is achieved numerically by calculating the data as
variablety. At each time step during the simulation we described above and than projecting it onto constant values

F(tg)=9(ty)®
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TABLE |. Parameters from the results of the nonlinear least squares best ftﬁependent scattering rate as the electrons relax to the bottom
to the measured data. One sigma uncertainties are given in parentheses. T(S‘F the conduction band after being initiaIIy photoexcited
conversion between cm and frequency i=cv, y=cy, wherecis the  \;thermore we can model situations where a THz pulse is
speed of light. . . ..

P 9 generated by a sample that is excited by a visible pulse as
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