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Using the finite-difference time-domain pulse propagation method
to simulate time-resolved THz experiments

Matthew C. Beard and Charles A. Schmuttenmaera)

Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107

~Received 1 September 2000; accepted 14 November 2000!

The finite-difference time-domain~FDTD! method has been applied to time-resolved THz
spectroscopy~TRTS! experiments. Time-resolved THz spectroscopy utilizes an optical pump pulse
to excite the sample, followed by a far-infrared~FIR! probe pulse with frequency components that
span from 10 to 100 cm21. The subpicosecond evolution of the FIR spectrum is obtained as a
function of time after the visible photoexcitation event. Significant challenges arise in interpreting
these experimental results due to the very different frequencies of the pump and probe pulses.
Therefore, it is essential to simulate the experiment. The method described entails numerically
propagating both the THz probe pulse and the visible pump pulse simultaneously, keeping track of
the transiently induced polarization from absorption of the visible pulse. Group velocity mismatch
between the visible and THz pulse and a transiently changing response function are completely
accounted for in the calculation. Furthermore, a spatially varying polarization can be included to
account for a nonuniform excited region of the sample under investigation. The response function
of the material is described as a multimode Brownian oscillator that can describe dispersive media
in a very general sense. In particular, the overdamped, underdamped, and critically damped cases
are all included, as well as special cases such as a Debye or Drude response. As a specific example,
we present results of modeling a TRTS experiment of photoexcitation of a dye in solution, namely,
2,11,20,29-tetra-tert-butyl-2,3-napthalocyanine, dissolved in toluene. We carry out a nonlinear least
squares fit of a parameterized model to the measured data to show that the FDTD–TRTS method is
able to accurately reproduce the features observed in the measured data set. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1338526#
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I. INTRODUCTION

Recent developments in time-resolved THz spectrosc
~TRTS! have enabled the measurement of the electric field
a nearly single-cycle THz pulse after it propagates throug
photoexcited medium with subpicosecond tempo
resolution.1–6 This new visible pump, far-infrared~FIR!
probe spectroscopy, has opened up the FIR region of
spectrum to time-resolved studies~which have proven to be
of great utility in other regions of the spectrum!. The FIR
region contains important information relevant to chemist
physics, and biology, andtime-resolvedstudies in the FIR
will provide new insights. Unique challenges exist to co
rectly collect and interpret data from TRTS experiments.4,6–8

These challenges arise because the THz probe pulses
large bandwidth in relation to their central frequency; hen
the slowly varying envelope approximation is not valid.
this article we discuss these challenges, and extend fin
difference time-domain~FDTD! pulse propagation method
to model TRTS experiments in order to extract tim
dependent information.

FDTD methods are commonplace for solving comp
problems for electromagnetic~EM! pulse propagation,9,10but
they have only recently been applied to EM propagation
dispersive media.11–15 A dispersive medium is described b
frequency-dependent material parameters: the absorption

a!Electronic mail: charles.schmuttenmaer@yale.edu
2900021-9606/2001/114(7)/2903/7/$18.00
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efficient, a(v), and index of refraction,n(v). Typically,
Fourier transform~FT! methods are used to extract inform
tion from EM pulse propagation experiments, and the
methods have been used successfully to interpret static
spectra,16,17 unfortunately, they do not correctly describe
TRTS experiment. In this article, we show that FDTD calc
lations can reproduce the phenomena encountered in a T
experiment when the FT methods fail.

Three situations arise in TRTS experiments that hin
the use of FT methods.4,7,18 First, group velocity mismatch
exists between the propagation of the visible and THz pu
in the dispersive medium. Second, the optical properties
the medium may change on the timescale of the THz pu
duration. Third, there might be a nonuniform spatial dist
bution of the photoexcited region in the material being stu
ied. These situations are all correctly simulated in a FD
calculation by numerically propagating both the visible a
the THz pulses simultaneously. The transient polarization
duced by propagation of the visible pulse influences
propagation of the THz pulse, and evolves according to
propagation of the visible pulse and the excited state pro
ties. Thus, the THz pulse encounters a medium whose
sponse is changing or has changed due to concurrent or
propagation of the visible pulse. Herein lies the power of
FDTD method in simulating TRTS experiments: the optic
properties of the medium are transiently modifiedduring the
3 © 2001 American Institute of Physics
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propagation of the THz pulse, which is exactly what occ
in the experiment.

This article is organized by first describing the sta
FDTD method for dispersive media. Then the multimo
Brownian oscillator~MBO! time-domain response functio
is introduced and shown to be a general way to desc
dispersive phenomena. These response functions are the
corporated into the FDTD method. Finally, the FDT
method is extended to include the visible pump pulse pro
gation to simulate TRTS experiments, and results of pho
excited 2,11,20,29-tetra-tert-butyl-2,3-napthalocyanine
~TBNC! in toluene are shown to illustrate the technique.

II. METHOD

A. Finite-difference time-domain propagation

A dispersive medium can be treated within the stand
Yee FDTD method10 using several different methodologie
The three most common approaches are the recursive co
lution ~RC!,11,12 the Z-transform method,14 and the auxiliary
differential equation~ADE! method.15 While each method
has its advantages and disadvantages,19 we have found the
RC–FDTD method most useful for simulating TRTS expe
ments because it is most intuitive, easiest to implement,
general enough to simulate a wide variety of experime
The only requirement of the RC–FDTD method is that t
time-domain response function can be expressed in an e
nential form, which is satisfied by the MBO response fun
tion. Lorentzian, Debye, and Drude responses are all spe
cases of the MBO response function. Furthermore, the o
cal properties of an arbitrary medium can be expressed
linear combination of simple MBO functions.

Because the beamwaists of the visible and THz bea
are much larger than the penetration depth of the excita
pulse, we need consider only one dimension, but this met
is easily generalizable to three dimensions. In one dim
sion, the Maxwell curl equations are

¹3H5
]D

]t
1J,

~1!

¹3E52
]B

]t
,

whereD is the displacement field,E is the electric field,B is
the magnetic field,H5mB ~where m is the permeability!,
andJ is the current. For the following,J is replaced by the
source current which is a reference THz pulse, and no o
sources of current are included.

The RC–FDTD method is based on convolution of t
material response function~or time-domain susceptibility!,
x(t), with the electric field to obtain the electri
displacement.11,12

D~ t !5«`«0E~ t !1«0E
0

t

E~ t2t!x~t!dt. ~2!

Discretization within the familiar Yee cell10 leads to the
FDTD formula for Eq.~2! yielding11,12
s
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Dn~ i !5«`«0En~ i !1 (
m50

n21

En2m~ i !E
mDt

(m11)Dt

x~t!dt,

~3!

wherenDt is the time,iDz is the distance,«` is the high
frequency dielectric constant, and«0 is the permittivity of
free space. If the material response function has an expo
tial form, then the summation in Eq.~3! can be recursively
updated at each time step. Following Luebberset al.,11,12 we
define the following quantities:

xm5E
mDt

(m11)Dt

x~t!dt, ~4!

Dxm5xm2xm11, ~5!

cn5 (
m50

n21

En2mDxm. ~6!

The electric field update equation is then11,12

En11~ i !5
«`

«`1x0
En~ i !1

1

«`1x0
cn2

Dt

~«`1x0!«0Dz

3@Hn11/2~ i 11/2!2Hn11/2~ i 21/2!#2
Js~ i !Dt

«0
,

~7!

and magnetic field update is

Hn11/2~ i 11/2!5Hn21/2~ i 11/2!

2
Dt

mDz
@En~ i 11!2En~ i !#. ~8!

The source currentJs is given by

Js~ i !5H ETHz~ t !

Z
, i 55

0, iÞ5

, ~9!

where Z5Am0/«0 is the impedance of free space, an
ETHz(t) is the value of a reference THz pulse at timet. The
reference pulse is generated at grid position No. 5, whic
typically well in front of the sample cell position and fiv
grid points in front of the boundary of the simulation spac
Absorbing boundaries20,21 are used to absorb the backwa
going pulse as well as any reflections from the sample c

To propagate the pulse, we only need to obtainx(t), as
described below, and then evaluate Eqs.~7! and ~8!.

B. MBO response function

The MBO response function is described by a solut
of the generalized Langenvin equation~GLE! of motion.22 If
we average over thermal fluctuations and make the Mark
ian approximation~constant damping coefficient,g!, then the
GLE reduces to

s̈j~ t !1v j
2sj~ t !12g j ṡj~ t !5Ah j«0

mj* V
E~ t !, ~10!
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where,sj is the macroscopic mode coordinate that represe
the expectation value over all microscopic orientations a
phases of thej th mode,v j is the j th oscillator frequency,g j

is the j th damping coefficient,h j is the coupling of thej th
mode to the driving fieldE(t), m* is the effective mass o
the oscillator, andV is the volume. This is simply the equa
tion of motion for a damped, driven harmonic oscillator wi
force constantkj5v j

2 and damping coefficientd j52g j .
The response function of a medium determines the c

tribution to the polarization at timet from an electric field at
prior times; this contribution is

P~ t !5«0E
0

t

E~ t,t!x~t!dt. ~11!

This is the second term of Eq.~2!. x(t) can be obtained by
considering the delta function impulse response to the eq
tion of motion7,23 @Eq. ~10!# and is given by24

x j~ t !5u~ t !exp~2g j t !@A1 exp~b j t !1A2 exp~2b j t !#,
~12!

whereb j5Ag j
22v j

2 and b may be either real (v j,g j ) or
imaginary (v j.g j ), andu(t) is the Heaviside step functio
at t50. If A152A25h j /(2b j ) then we recover the Lorent
zian response, and whenv j50 also holds, we recover th
Drude response. IfA150,A25h j /(2b j ), then we recover
the Debye response whenv j50.

For example, the time-domain Lorentzian response
given by

x j~ t !5
h j

2b j
exp~2g j t !@exp~b j t !2exp~2b j t !#, ~13!

and the frequency-domain response is given by the Lap
transform of Eq.~13!:

x j~v!5
v j

2Gj~«s2«0!

v j
212ivg j2v2

, x j~n!5
n j

2Gj~«s2«`!

n j
212ing j82n2

,

~14!

where v52pn, g j52pg j8 and h j5v j
2Gj («s2«`), «s is

the static dielectric constant andGj5(« j 212« j )/(«s2«`),
where« j describes thej th intermediate value of the dielec
tric constant.

Equation~12! is valid for underdamped or overdampe
oscillators, as long asb is allowed to be complex. There ar
three distinct cases of damping:

underdamped:v j.g j , b j5 iAv j
22g j

2;

critically damped:v j5g j , b j50;

overdamped:v j,g j , b j5Ag j
22v j

2.

Equation ~12! approaches the critically damped ca
smoothly from either side, but is incorrect for the exact ca
of critically damping. We treat cases of critically damping
increasingv i by one part in 105. Figure 1 shows plots of the
response function for the three cases, and the special cas
Drude and Debye overdamping whenv j5kj50. Previous
workers have used the RC–FDTD method f
underdamped,12 Debye,19 and Drude11 oscillators, but it has
never been applied to the general overdamped case witkj
ts
d

n-

a-
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ce

e

s of

Þ0. We show here that the RC–FDTD method can be
plied to a general Brownian oscillator; both underdamp
and overdamped motions can be modeled with comp
generality. This is essential for FIR studies since the majo
of response functions encountered are overdamped. The
proach for the underdamped case cannot be implemente
the general overdamped case simply by allowingb to be
real. Our general approach outlined below is based on t
approach for the underdamped case.12

To implement the RC–FDTD method we evaluate t
integral in Eq.~4!, determine the convolution term of Eq.~6!,
and evaluate Eqs.~7! and ~8!. For convenience, we split th
response function in Eq.~12! into two parts,x1 andx2 , and
evaluate each individually. For the Lorentzian response
Eq. 13 we obtain

x1,j
m 5

A1,j

~b j2g j !
exp@mDt~2g j1b j !#

3$exp@Dt~2g j1b j !#21%, ~15!

x2,j
m 5

2A2,j

~b j1g j !
exp@mDt~2g j2b j !#

3$exp@Dt~2g j2b j !#21%. ~16!

The response functionx at time stepm11 is related to the
previous value by

x j
m115x1,j

m exp@Dt~2g j1b j !#

1x2,j
m exp@Dt~2g j2b j !#, ~17!

and, therefore,

Dx1,j
m 5x1,j

m $12exp@Dt~2g1b!#%,
~18!

Dx2,j
m 5x2,j

m $12exp@Dt~2g2b!#%.

The convolution term in Eq.~6! can be updated as follows

c1,j
n ~ i !5E~ i !Dx1,j

0 1exp@Dt~2g j1b j !#c1,j
n21, ~19!

FIG. 1. Plots of the time-domain response function for several differ
cases of the MBO. The solid line is critically damped behavior, and the l
dashed line is for overdamped. The dash–dot–dotted line is for un
damped, the dotted line is for the Drude response, and the dash–dotte
is the Debye response. With the RC–FDTD method described in the tex
are able to model any combination of these dielectric responses.
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c2,j
n ~ i !5E~ i !Dx2,j

0 1exp@Dt~2g j2b j !#c2,j
n21, ~20!

c j
n5c1,j

n 1c2,j
n , ~21!

with the initial time stepc j
050. Thus, for each oscillatorj

we need two additional real update terms ifb is real and two
complex update terms ifb is complex,c1,j , and c2,j . To
obtain the quantities needed in theE field update of Eq.~7!,
we sum over all the oscillators~poles! which describe the
material parameters, taking the real part ifb is complex,
cn5( j Re@c j

n#, andxm5( j Re@x j
m#. Note that for the un-

derdamped case,b j in Eqs. ~13!, ~15!, and ~16! is complex
and thus so arec j andx j . Before using these quantities i
Eqs.~7! and ~8! the real part is taken as described above

We can also apply this approach to a system with two
more independent response functions, such as a hom
neous mixture25 where «5( i f i« i , where « is the overall
complex dielectric function, and« i the dielectric functions of
the individual components with volume fractionf i . We find
that for each additional component of the mixture, two ad
tional update terms per oscillator are required.

III. RESULTS

A. Static FDTD results

As an example of applying the above FDTD formalis
to an overdamped oscillator, we present the results of si

FIG. 2. Static FIR absorption and refractive index of chloroform along w
the best fit in the frequency domain and FDTD propagation. The points
the measured data, the solid line is the best fit line, and the dashed
~virtually indistinguishable from the solid line! is the FDTD result. The bes

fit values weren̄1541.604 cm21, ḡ1530.56 cm21, n̄256.57 cm21, ḡ2

520.40 cm21, «s54.801,«154.702, and«`52.13. The inset is the time-
domain response function.
r
ge-

i-

u-

lating the transmission of a THz pulse through neat CHC3.
The static FIR spectrum of CHCl3 is shown in Fig. 2. The
data were obtained by measuring the THz transmiss
through a variety of path lengths and extracting the abso
tion and index of refraction from a Beer’s law analysis
described in Ref. 26. A double~two-pole! MBO model was
fitted to the data in the frequency domain with the result
parameters given in the Fig. 2 caption. The inset of Fig
displays the time-domain response function. One oscillato
overdamped and one is underdamped. This static experim
was then simulated with the extended RC–FDTD meth
the results are compared to the experiment, and the MBO
in the frequency domain. This verifies that the FDTD meth
can reproduce the static experiment for both underdam
and overdamped oscillators. Furthermore, we have veri
that the FDTD method can reproduce any combination
MBO responses: Drude, Debye, underdamped, overdam
and critically damped. It is essential that in the static limit
of the cases be dealt with accurately before proceeding to
time-resolved situation, because the oscillators may cha
from one limit to another. For example, an oscillator m
change from underdamped to overdamped upon photoex
tion.

B. TRTS-FDTD method

Extension of the FDTD method to time-resolved sim
lations is achieved by including the effects of the visib
photoexcitation on the THz pulse propagation. In principle
separate FDTD treatment of the visible pump pulse could
performed. This is not necessary, however, since it exp
ences very little dispersion because the absorption coeffic
and index of refraction of the medium are essentially co
stant over the bandwidth of the pulse. The visible pu
propagates according to its group velocity in the mater
and is attenuated according to Beer’s law. The primary eff
of the visible pulse is that it changes the material parame
governing propagation of the THz pulse. These effects
included by providing spatial and temporal dependencies
the response function, i.e.,x j (t)→x j (t,t9,z), wheret9 rep-
resents the relative delay between the visible and THz pu
prior to entering the sample, andz is the distance into the
sample the pulses have propagated. With these two a
tions, a wide variety of TRTS experiments can be simulat

For example, consider Fig. 3, which displays a TH
pulse as it propagates from left to right through a hypoth
cal photoexcited medium at three different pump-probe de
times. The vertical line represents the interface of air and
material under investigation. The solid and dashed tra
represent the THz pulse and the transient polarization
duced by the visible pulse, respectively. The FIR opti
properties are altered by absorption of the visible pu
pulse, which is taken to have a Gaussian temporal pro
The properties return to their nonphotoexcited values with
exponential lifetime. Therefore, the temporal dependence
the transient polarization is a convolution of a Gaussian
an exponential function. The propagation time of the T
pulse is the same in each of the three panels, and only
relative delay of the pump pulse has been changed. In
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3~a! the pump pulse arrives after the main part of the T
pulse, however, the trailing edge of the THz pulse is s
affected by it. In Fig. 3~b! the pump pulse arrives in th
middle of the THz pulse, and the THz pulse is strongly d
torted by the changing optical constants. Finally, in Fig. 3~c!
the pump pulse arrives well before the THz pulse. Howev
the THz pulse still experiences different material parame
for different parts of the pulse due to the short lifetime of t
excited state parameters chosen. The pump pulse intens
seen to decrease from Fig. 3~a! to Fig. 3~c! due to the ab-
sorption of the visible pulse as it propagates through
medium.

To avoid numeric errors we have found that the time a
distance grid steps must be at least 10–100 times sm
than any variations in either the temporal13 or spatial scale of
the simulation. In addition, the Courant stability criterion27

that Dz/Dt>c/nTHz must be adhered to, wherenTHz is the
index of refraction for the THz pulse. In our simulations, t

FIG. 3. TRTS–FDTD simulation. The THz pulse has propagated the s
amount of time in each panel. The solid line is the THz pulse and the da
line represents the transient polarization resulting from the propagatio
the visible pulse. In~a! the pump pulse comes before the THz pulse, in~b!
the pump pulse arrives at the same time as the THz pulse, and in~c! are
effects of the pump pulse arriving before the THz pulse.
z
l

-

r,
rs

is

e

d
ler

pump pulse width is about 100 fs, which limits the time st
to 10 fs and consequentially the distance step to 3mm. If the
absorption depth is smaller than 30mm, however, then the
spatial scale will be the limiting factor. We typically perform
simulations at 0.8 times the Courant stability criterion.

C. TBNCÕtoluene simulations

As a specific example of the TRTS–FDTD method w
present results of simulating a TRTS experiment. A d
molecule, TBNC, is dissolved in toluene and photoexci
by the visible pulse, after which the solvent molecules
probed by the THz pulse. The goal of this experiment is
probe the low frequency collective modes of the solvent
response to the perturbation by the excited solute. The
ible pulse excites TBNC into its lowest excited electron
state, which has a different charge distribution than
ground state, and the solvent molecules respond to this
charge distribution. Roughly 5% of the solvent molecul
those participating in the solvation process, are affected
this perturbation.

Instantaneous electronic responses can contribute to
signal in addition to the nuclear response. We attribute
response close to timet50, when the two pulses are ove
lapped, to electronic processes, while those that persist
longer times are attributed to a nuclear or molecular con
bution. Therefore, we add an electronic response to
model which is active only during the duration of the pum
pulse. In summary, we treat the photoexcited sample a
mixture of three types of oscillators whose populations
time dependent: nonphotoexcited oscillators, photoexc
oscillators, and an oscillator that corresponds to an insta
neous electronic response.

The response function is given by

x~ t,t9,z!5 f e~ t,t9,z!xe~ t !1@12 f e~ t,t9,z!#x0~ t !

1a~ t,t9,z!xelec~ t !, ~22!

wheref e(t,t9,z) is the ‘‘population’’ of excited oscillators a
time t2t9 and positionz. The fraction not affected by pho
toexcitation is simply 12 f e(t,t9,z). The contribution of the
instantaneous response is given bya(t,t,z). The excited,
nonexcited, and electronic response functions arexe(t),
x0(t), andxelec(t), respectively.

The temporal dependence of the excited nuclear osc
tors is given by the convolution of the visible pulse~taken as
a Gaussian function! and a single exponential decay that h
an optional long time offset. The spatial dependence i
single exponential function determined from the absorpt
coefficient of the dye solution. Thus, the excited ‘‘popul
tion’’ is given by

f e~ t,t9,z!5g~ t9,t ! ^ ~e2t9/t1b!exp~2az!

5 f 0 exp~2az!E
2`

`

expF2S t82t9

Dw D 2G
3FexpS t8

t D1bGdt8, ~23!

e
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FIG. 4. Two-dimensional contour plot of the THz difference scan~pump on–pump off!. ~a! Experimental data and~b! FDTD–TRTS results found by the bes
nonlinear least squares fit to the data employing the model described in the text and parameters given in Table I.~c! Cuts taken at 1.3 ps~as indicated by the
upper line on the two grids!. The measured data are shown by the solid line, and the calculated data are shown by the dashed line.~d! Identical to~c!, except
that the cut is taken at 0.2 ps.
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whereg(t9,t) is a Gaussian function representing the visib
pulse, ^ denotes a convolution,t is the lifetime of the ex-
cited oscillators,b is the long time offset,a is the absorption
coefficient of the dye solution,Dw is the full width at half
maximum of the Gaussian pump pulse,f 0 is a scaling pa-
rameter that normalizes the convolution of the Gauss
function with the exponential, then scales it byf e,max which
approximately represents the volume fraction of solvent m
ecules which are affected by one laser pulse,t85t
2(znvis /c) is the effective propagation time into the samp
wherenvis , is the index of refraction for the visible pulse
andc is the speed of light.

The time dependence of the electronic contribution
given bya(t,t8,z), which is taken to be the same Gaussi
function that represents the visible pulse described in
~23! and multiplied by the same spatial dependen
exp(2az). For convenience, the electronic response fu
tion xelec is taken to be a Lorenztian function whose coupli
to the field is given by the productD«elecnelec

2 .
Discretization of Eq.~23! is accomplished by numeri

cally calculating the convolution term at the start of t
simulation for each point in the simulation space and sav
the results. Depending on the time step size and the leng
the simulation, this can become quite a large calculat
Therefore, we typically calculate the convolution every
steps and interpolate to obtain a value at each point in
simulation space. Then, during the simulation we sim
‘‘look up’’ the appropriate value off e(t,t9) and multiply by
exp@2(i2i0)Dza#u(i2i0), where i 0 is the position of the
sample in the simulation space andu( i 2 i 0) is the Heaviside
step function.

This is achieved by calculating the following convol
tion at the start of the simulation:

F~ td!5g~ td! ^ FexpS td

t D1bG , ~24!

where F(td) represents the population at the dummy tim
variable td . At each time stepn during the simulation we
n

l-

s

q.
y
-

g
of
.

e
y

find the value of F(td) which corresponds totd5nDt
2( iDznvis /c)1t9. The convolution needs be calculate
only once for the entire simulation.

The model also includes effects of the quartz cuve
We propagate the THz pulse through the cuvette, both be
and after the sample in order to account for slight dispers
and absorption. The reference THz pulse used is the m
sured reference pulse which has been propagated backw
in time through the nonphotoexcited toluene solution a
quartz cuvette. In addition, we account for propagation a
distortion through the detector.18

We employ a nonlinear least squares fitting routine
adjust the parameters in our model to obtain the best fit.
nonexcited parameters of toluene are fit well by a sin
overdamped MBO oscillator and are held fixed during the
Ten parameters were allowed to vary during the fit, wh
brings up the issue of becoming trapped in a local minimu
There are three reasons that we feel the parameters ar
termined, unambiguously however. First, the correlatio
among parameters were quite low. For example, the hig
correlation was betweenD«elec andnelec, and was only 0.73.
Second, these are the results of a global fit. That is, th
parameters simultaneously describe 30 individual scans, e
of which is 512 points long, for a total of 15 360 data poin
included in the fit. Third, the feature at a THz delay of;2.9
ps that grows in later than the two primary features at 2.1
2.5 ps is very sensitive to the values of the parameters,
ticularly the instantaneous electronic contribution.

The results of the FDTD–TRTS fit are shown in Fig.
and it is seen that the agreement is quite good. Figure~a!
displays a contour plot of the measured data and Fig. 4~b! is
the best fit calculated data with the parameters given in Ta
I. Figures 4~c! and 4~d! are representative cuts at pump
probe delay times of 1.3 and 0.2 ps, respectively, wh
compare the calculated and measured data. We collec
data as described in Refs. 7 and 18 such that every portio
the probe has experienced the same delay from the p
beam. This is achieved numerically by calculating the data
described above and than projecting it onto constant va
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of t2t9. It is seen from Table I that the Lorentzian oscillat
representing the solvent changes from overdamped to un
damped upon photoexcitation of the dye molecule and
the static dielectric constant increases slightly. Both of th
results are consistent with a ‘‘stiffening’’ of the liquid tha
surrounds the dye molecule. The decay timet corresponds to
the solvation time of the excited dye molecules. A mo
complete discussion of the underlying physics of these
sults will follow in a separate paper in which we compa
these results with other TBNC/solvent systems.

IV. CONCLUSIONS

The RC–FDTD propagation method has been exten
in two ways. First, it is now possible to treat any type
MBO response: underdamped, overdamped, critic
damped, Drude model, or Debye model. Second, and m
important, the RC–FDTD method can now treat situatio
where the material response parameters are changing te
rally and spatially. These developments are necessar
properly simulate THz pulse propagation through photo
cited media, and thereby understand results of TRTS exp
ments.

The generality of our extended FDTD method allow
arbitrary spatial distributions of photoexcited species to
considered. That is, we need not limit them to a slab, or
exponentially decreasing distribution. Any ‘‘back surface
reflections at the interface between the photoexcited
nonphotoexcited regions of the sample are automatically
cluded, even if there is not a sharp boundary separating
two regions. For arbitrary spatial distributions we replace
exp(2az) term in Eq.~23! with appropriate spatial distribu
tion.

With the scheme outlined above it is possible to inclu
a wide variety of dynamics other than that described by
~22!. In fact, we have applied this technique to photoexci
electrons in GaAs.4 For those results we must include a tim

TABLE I. Parameters from the results of the nonlinear least squares be
to the measured data. One sigma uncertainties are given in parenthese

conversion between cm21 and frequency isn5cn̄, g5cḡ, wherec is the
speed of light.

Parameter
Nonexcited
oscillators Excited oscillators

D« ~electronic! ••• 0.28 ~0.01!

n̄ ~electronic! ••• 26.1 ~0.4! cm21

ḡ ~electronic! ••• 54 ~1! cm21

«s ~nuclear! 2.19 ~fixed! 2.83 ~0.02!
«` ~nuclear! 2.15~fixed! 2.15 ~fixed!
n̄ ~nuclear! 159 cm21 ~fixed! 156 ~1! cm21

ḡ ~nuclear! 297 cm21 ~fixed! 89.9 ~0.5! cm21

t 0.47 ~0.01! ps
b 0.49 ~0.01! ps
Dw 150 fs ~fixed!
a 400 cm21 ~fixed!
f e,max 0.05 ~fixed!
er-
at
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d

dependent scattering rate as the electrons relax to the bo
of the conduction band after being initially photoexcite
Furthermore we can model situations where a THz puls
generated by a sample that is excited by a visible pulse
both propagate through a material which is dispersive28

Simulating TRTS experiments with the FDTD method is e
sential for correctly interpreting the temporal evolution
the FIR spectrum.
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